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As cities evolve towards inclusivity, ensuring accessibility for all urban
residents is a critical challenge. Intelligent mobility systems, particularly
those designed for individuals with disabilities, are essential for navigating
complex urban environments. In this paper, we present a simulation-based
perspective, aimed at advancing research in AI-driven urban mobility and
accessibility. First, we propose MetaUrban, a flexible and scalable simulation
platform that enables the development, testing, and evaluation of embodied
AI systems in dynamic urban environments. MetaUrban can construct an
infinite number of interactive urban scenes from compositional elements,
covering a vast array of ground plans, object placements, pedestrians, vul-
nerable road users, and other mobile agents’ appearances and dynamics.
Then, to facilitate AI-driven urban mobility research, we designed point
navigation and social navigation tasks as the pilot study using MetaUrban
and established various baselines of Reinforcement Learning and Imitation
Learning. Further, we outline a broader vision for how MetaUrban can be
leveraged to simulate and improve urban accessibility across a range of mobil-
ity systems. We position MetaUrban as a foundational tool for future urban
design, promoting research that enhances the mobility and accessibility of
cities. Project page: https://metadriverse.github.io/metaurban

CCS Concepts: • Computing methodologies → Simulation environ-
ments; Artificial intelligence; • Human-centered computing→ Accessi-
bility systems and tools.
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1 Introduction
Public urban spaces, such as streetscapes, plazas, and parks, are vital
components of cities. These spaces serve not only as transit corridors
but also as social and economic hubs where interactions between
residents occur. Historically, urban spaces have played a key role
in shaping social behavior and community engagement [Herbert
1962; Jacobs 1961; Park et al. 1925]. As cities continue to grow and
evolve, making these spaces accessible and inclusive to all individ-
uals becomes increasingly crucial for enhancing the quality of life
and ensuring equitable access to public resources.
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In recent years, the development of Robotics and Embodied AI has
introduced a wide range of AI-driven mobile machines into urban
spaces. From autonomous delivery robots to electric wheelchairs,
these intelligent systems are becoming a common sight in public
areas, navigating alongside pedestrians. Thus, how to ensure mobile
machines’ ability to move safely through complex urban environments
and how to design the urban space to make it accessible to the varied
nature of mobile machines become critical questions. These two ones
form a pair of interesting dual questions – one stands in improving
mobile machines’ ability when facing complex urban environments,
and another, in contrast, stands in improving urban environments
themselves to better accommodate mobile machines. Urban simula-
tion, which is able to model complex scenarios and interactions in
urban spaces, allowing the development and testing of AI systems
in a controlled, scalable environment, provides a promising way to
improve both AI-driven mobility and accessibility in cities.

Simulation platforms [Deitke et al. 2020, 2022b; Dosovitskiy et al.
2017; Kolve et al. 2017; Krajzewicz et al. 2002; Li et al. 2024, 2022b;
Savva et al. 2019; Shen et al. 2021; Szot et al. 2021] have played a cru-
cial role in enabling systematic and scalable training of the embodied
AI agents and the safety evaluation before real-world deployment.
However, most of the existing simulators focus either on indoor
household environments [Gan et al. 2021; Kolve et al. 2017; Li et al.
2024; Puig et al. 2018; Savva et al. 2019; Shen et al. 2021] or outdoor
driving environments [Dosovitskiy et al. 2017; Krajzewicz et al. 2002;
Li et al. 2022b]. For example, platforms like AI2-THOR [Kolve et al.
2017], Habitat [Savva et al. 2019], and iGibson [Shen et al. 2021] are
designed for household assistant robots in which the environments
are mainly apartments or houses with furniture and appliances;
platforms like SUMO [Krajzewicz et al. 2002], CARLA [Dosovit-
skiy et al. 2017], and MetaDrive [Li et al. 2022b] are designed for
research on autonomous driving and transportation. Yet, simulating
urban spaces with diverse layouts and objects, complex dynamics of
pedestrians, is much less explored.
To address this gap, we present a simulation-based perspective,

demonstrating a practical scenario of how a simulator enhances
urban mobility and discussing a future vision of how a simulator
can be used for improving urban accessibility. First, we propose a
simulation platform, MetaUrban, which can construct an infinite
number of interactive urban scenes from compositional elements,
covering a vast array of ground plans, object placements, pedestri-
ans, vulnerable road users, and other mobile agents’ appearances
and dynamics. Then, we make a pilot study using MetaUrban in
AI-driven urban mobility with two standard tasks – point naviga-
tion and social navigation, and establish extensive baselines for
Reinforcement Learning, Safe Reinforcement Learning, Offline Re-
inforcement Learning, and Imitation Learning. Finally, we explore
how MetaUrban can be adapted to address broader issues of urban
accessibility, offering a vision for how simulation platforms can be
leveraged to create more inclusive cities. We envision this work will
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Fig. 1. Procedural generation. MetaUrban can automatically generate complex urban scenes with its compositional nature. From the second to the fourth
column, the top row shows the 2D road maps, and the bottom row shows the bird-eye view of 3D scenes.

serve as a pioneering exploration that harnesses urban simulation
platforms to advance AI-driven mobility in complex environments
and enhance the accessibility of public spaces for all individuals.

2 MetaUrban Simulation Platform
MetaUrban is a compositional simulation platform that can gen-
erate infinite training and evaluation environments for Embod-
ied AI in urban spaces. Figure 1 depicts the procedural generation
pipeline. MetaUrban uses a structured description script to create
urban scenes. Based on the provided information about street blocks,
sidewalks, objects, agents, and more, it starts with the street block
map, then plans the ground layout by dividing different function
zones, then places static objects, and finally populates dynamic
agents.
This section highlights three key designs in the MetaUrban sim-

ulator to support exhibiting three unique characteristics of urban
spaces – diverse layouts, particular object distribution, and complex
dynamics. Section 2.1 introduces Hierarchical Layout Genera-
tion, which can infinitely generate diverse layouts with different
functional zone divisions and object locations that are critical for the
generalizability of agents. Section 2.2 introduces Scalable Object
Retrieval, which harnesses worldwide urban scene data to obtain
real-world object distributions in different places, and then builds
large-scale, high-quality static objects set with Vision Language
Models (VLMs) [Li et al. 2022a] enabled open-vocabulary search-
ing. It is useful for training agents specialized for urban scenes.
Section 2.3 introduces Cohabitant Populating, in which we lever-
age the advancements in digital humans to enrich the appearances,
movements, and trajectories of pedestrians and vulnerable road
users, as well as incorporate other agents to form a vivid cohabiting
environment. It is critical for improving the social conformity and
safety of the mobile agents.

2.1 Hierarchical Layout Generation
The diversity of scene layout, i.e., the connection and categories of
blocks, the specifications of sidewalks and crosswalks, as well as the
placement of objects, is crucial for enhancing the generalizability
of trained agents maneuvering in public spaces. In the hierarchical

layout generation framework, we start by sampling the categories
of street blocks and dividing sidewalks and crosswalks and then
allocate various objects, with which we can get infinite urban scene
layouts with arbitrary sizes and specifications of maps.
Ground plan. We design 5 typical street block categories, i.e.,
straight, intersection, roundabout, circle, and T-junction. In the
simulator, to form a large map with several blocks, we can sample
the category, number, and order of blocks, as well as the number and
width of lanes in one block, to get different maps. Then, each block
can simulate its own walkable areas – sidewalks and crosswalks,
which are key areas for urban spaces with plenty of interactions.

As shown in Figure 2 (left), according to the Global Street De-
sign Guide [Initiative and of City Transportation Officials 2016]
provided by the Global Designing Cities Initiative, we divide the
sidewalk into four functional zones – building zone, frontage zone,
clear zone, and furnishing zone. Based on their different combina-
tions of functional zones, we further construct 7 typical templates
for sidewalks (Figure 2 (right)). To form a sidewalk, we can first
sample the layout from the templates and then assign proportions
for different function zones. For crosswalks, we provide candidates
at the start and the end of each roadway, which support specifying
the needed crosswalks or sampling them by a density parameter.
Finally, roadways, sidewalks, and crosswalks can take a terrain map
as substrate to form different ground situations.
Object placement. After determining the ground layout, we can
place objects on the ground. We divide objects into three classes. 1)
Standard infrastructure, such as poles, trees, and signs, are placed
periodically along the road. 2) Non-standard infrastructure, such
as buildings, bonsai, and trash bins, are placed randomly in the
designated function zones. 3) Clutter, such as drink cans, bags, and
bicycles, are placed randomly across all functional zones. We can
get different street styles by specifying an object pool while getting
different compactness by specifying a density parameter.

2.2 Scalable Object Retrieval
Hierarchical layout generation decides the scene’s layout and where
to place the objects. However, to make the trained agents generaliz-
able when navigating through scenes composed of various objects
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Fig. 2. Ground plan. (Left) Sidewalk is divided into four functional zones – building, frontage, clear, and furnishing zone. (Right) Seven typical sidewalk
templates – from (a) to (g).

in the real world, what objects to place is another crucial question.
In this section, we propose the Scalable Assets Retrieval pipeline,
in which we first get real-world object distributions from web data,
and then retrieve objects from 3D asset repositories through an
open-vocabulary search schema based on Vision Language Models
(VLMs) [Li et al. 2022a]. This pipeline is flexible and extensible: the
retrieved objects can be scaled to arbitrary sizes as we continue to
exploit more web data for scene descriptions and include more 3D
assets as the candidate objects.
Real-world object distribution extraction. Urban spaces have
unique structures and object distributions, such as the infrastructure
built by the urban planning administration and clutters placed by
people. Thus, we design a real-world distribution extraction method
to get a description pool depicting the frequent objects in urban
spaces. As illustrated in Figure 3 (a), we first leverage off-the-shelf
academic datasets for scene understanding, CityScape [Cordts et al.
2016] and Mapillary Vistas [Neuhold et al. 2017], to get a list of 90
objects that are with high frequency to be put in the urban space.
However, the number of objects is limited because of the closed-set
definitions in the image datasets. We introduce two open-set sources
to get broader object distribution from the real world. 1) Google
Street data. We first collect 25,000 urban space images from 50
countries across six continents. Then, we harness GPT-4o [OpenAI
2024] and open-set segmentation model Grounded-SAM [Ren et al.
2024] to get 1,075 descriptions of objects in the urban public space. 2)
Urban planning description data. We further get a list of 50 essential
objects in public urban spaces through a thorough survey of 10
urban design handbooks. Finally, by combining these three data
sources, we can get an object description pool with 1,215 items of
descriptions that form the real-world object category distribution.
Open-vocabulary search. The recent development of large-scale
3D object repositories [Deitke et al. 2024, 2023; Wu et al. 2023] en-
ables efficiently constructing a dataset for a specific scene. However,
these large repositories have three intrinsic issues to harness these
repositories: 1) most of the data is unrelated to the urban scene,

2) the data quality in large repositories is uneven, and 3) the data
has no reliable attribute annotations. To this end, we introduce an
open-vocabulary search method to tackle these issues. As shown in
Figure 3 (b), the whole pipeline is based on an image-text retrieval
architecture. We first sample objects from Objaverse [Deitke et al.
2023] and Objaverse-XL [Deitke et al. 2024] repositories to get pro-
jected multi-view images. Here, a naive uniform view sampling will
bring low-quality harmful images. Following [Luo et al. 2024, 2023],
we select and prioritize informative viewpoints, which significantly
enhance retrieval effectiveness. Then, we leverage the encoder of
a Vision Language Model BLIP [Li et al. 2022a] to extract features
from projected images and sampled descriptions from the object
description pool, respectively, to calculate relevant scores. Then,
we can get target objects with relevant scores up to a threshold.
This method lets us get an urban-specific dataset with 10,000 high-
quality objects in real-world category distributions. In addition, we
provide an interface for customizing training objects in the scene by
providing images or text descriptions, taking advantage of recent
advances in 3D object reconstruction [Kerbl et al. 2023; Liu et al.
2023b] and generation [Chen et al. 2023; Poole et al. 2023].

2.3 Cohabitant Populating
In this section, we will describe how to populate these static ur-
ban scenes with varied agents regarding appearances, movements,
and trajectories through Cohabitant Populating. Figure 4 shows
the sampled (a) pedestrians, vulnerable road users and robots, (b)
movements, and (c) trajectories.
Appearances. Following BEDLAM [Black et al. 2023] andAGORA [Pa-
tel et al. 2021], we represent humans as parametric human model
SMPL-X [Pavlakos et al. 2019], in which the 3D human body is
controlled by a set of parameters for pose 𝜃 , shape 𝛽 , and facial
expression 𝜙 , respectively. Then, built upon SynBody [Yang et al.
2023]’s asset repository, 1,100 3D rigged human models are proced-
ually generated by sampling from 68 garments, 32 hairs, 13 beards,
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Fig. 3. Scalable assets retrieval. (a) Real-world distribution extraction. We get object distribution for urban spaces from three sources: academic datasets,
Google Street data, and text description data. (b) Open-vocabulary search. We use the VLM to get image and text embedding, respectively. Then, based on the
relevant scores, we can get the objects with high rankings.

46 accessories, and 1,038 cloth and skin textures. To form safety-
critical scenarios, we also include vulnerable road users like bikers,
skateboarders, and scooter riders. For the other agents, we incorpo-
rate the 3D assets of COCO Robotics and Starship’s delivery robots,
Drive Medical’s electric wheelchair, Boston Dynamic’s robot dog,
and Agility Robotics’ humanoid robot.
Movements.Weprovide two kinds of humanmovements in the sim-
ulator – daily movements and unique movements. Daily movements
provide the basic human dynamics in daily life, i.e., idle, walking,
and running. Unique movements are the complicated dynamics that
appear randomly in public spaces, such as dancing and exercising.
We harness the BEDLAM dataset [Black et al. 2023] to obtain 2,311
unique movements.
Trajectories. For humans and other agents with daily movements,
we simulate their trajectories using the ORCA [Van Den Berg et al.
2011] social forces model and Push and Rotate algorithm [De Wilde
et al. 2014]. ORCA [Van Den Berg et al. 2011] uses a joint optimiza-
tion and a centralized controller that guarantees that agents will not
collide with each other or any other objects identified as obstacles.
Push and Rotate (P&R) [De Wilde et al. 2014] is a multi-agent path-
finding algorithm that can resolve any potential deadlock by local
coordination. In the future, an interesting direction is to endow
personal traits like job, personality, and purpose to humans and
harness the advantages of LLMs [Achiam et al. 2023] and LVMs [Liu
et al. 2023a] to enable social [Puig et al. 2023] and interactive be-
haviors [Park et al. 2023] of humans in urban scenes.

3 MetaUrban for AI-Driven Mobility
In this section, we present experiments to demonstrate how to en-
sure mobile machines’ ability to move safely through complex urban
environments with the MetaUrban simulator. In urban spaces, for all
mobile machines, such as intelligent electric wheelchairs and deliv-
ery robots, the most foundational demand is moving from one point
to another. To this end, in this section, we design two standard tasks,
Point Navigation (PointNav) and Social Navigation (SocialNav), and
benchmark extensive learning methods – Reinforcement Learning,
Safe Reinforcement Learning, Offline Reinforcement Learning, and
Imitation Learning, to evaluate how the MetaUrban simulation plat-
form can help in AI-driven urban mobility.

Data.Based on theMetaUrban simulator, we construct theMetaUrban-
12K dataset, including 12,800 interactive urban scenes for training
(MetaUrban-train) and 1,000 scenes for testing (MetaUrban-test).
Scenes in this dataset are connected by one to three street blocks
covering an average of 20,000𝑚2 areas. There are an average of 0.03
static objects per 𝑚2 and the average distance of objects is 0.7𝑚.
There are 10 dynamic agents per street block, including pedestrians,
vulnerable road users, and other agents. The average episode length
is 410𝑚. These form significantly challenging scenes for agents to
navigate through, which are crowded and have long horizons. We
further construct an unseen test set (MetaUrban-unseen) with 100
scenes for the unseen evaluations. To enable the fine-tuning exper-
iments, we construct a training set of 1,000 scenes with the same
distribution of MetaUrban-unseen, termed MetaUrban-finetune.
Tasks. In PointNav, the agent’s goal is to navigate to the target
coordinates in static environments without access to a pre-built en-
vironment map. In SocialNav, the agent is required to reach a point
goal in dynamic environments that contain moving environmental
agents. The agent shall avoid collisions or proximity to environmen-
tal agents beyond thresholds to avoid penalization (distance <0.2
meters). The agent’s action space in the experiments consists of
acceleration, brake, and steering. The observations contain a vector
denoting the LiDAR signal, a vector summarizing the agent’s state,
and the navigation information that guides the agent toward the
destination.
Methods.We evaluate 7 typical baseline models to build compre-
hensive benchmarks on MetaUrban, across Reinforcement Learning
(PPO [Schulman et al. 2017]), Safe Reinforcement Learning (PPO-
Lag [Ray et al. 2019], and PPO-ET [Sun et al. 2021]), Offline Reinforce-
ment Learning (IQL [Kostrikov et al. 2021] and TD3+BC [Fujimoto
and Gu 2021]), and Imitation Learning (BC [Bain and Sammut 1995]
and GAIL [Ho and Ermon 2016]).
Evaluation metrics. The agent is evaluated using the Success Rate
(SR) and Success weighted by Path Length (SPL) [Anderson et al.
2018; Batra et al. 2020] metrics, which measure the success and
efficiency of the path taken by the agent. For SocialNav, except
Success Rate (SR), the Social Navigation Score (SNS) [Deitke et al.
2022a], is also used to evaluate the social complicity of the agent.
For both tasks, we further report the Cumulative Cost (CC) [Li et al.
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Fig. 4. Cohabitant populating. (a) Examples of cohabitants in MetaUrban: pedestrians, vulnerable road users like bikers, skateboarders, scooter riders, and
mobile machines. (b) Examples of human movements. (c) Examples of trajectories of humans and mobile agents in complex interaction scenarios.

2022b] to evaluate the safety properties of the agent. It records the
crash frequency to obstacles or environmental agents.
Results. We build two benchmarks for PointNav and SocialNav
tasks. We train 7 typical baselines on the MetaUrban-train dataset
and then evaluate them on the MetaUrban-test set. We further make
zero-shot evaluations on the MetaUrban-unseen set to demonstrate
the generalizability of models while directly tested on unseen envi-
ronments. Table 1 shows the results in the PointNav and SocialNav
benchmarks. From the results, we can draw 4 key observations. 1)
The tasks are far from being solved. 2) Models trained onMetaUrban-
12K have strong generalizability in unseen environments. 3) Social-
Nav is much harder than PointNav due to the dynamics of themobile
environmental agents. 4) Safe RL remarkably improves the safety
property at the expense of effectiveness. For qualitative results,
please refer to our project page1.

Table 1. Benchmarks. The benchmark of PointNav and SocialNav tasks
on the MetaUrban-12K dataset. Seven representative methods of RL, safe
RL, offline RL, and IL are evaluated for each benchmark. indicates the
best performance among online methods (RL and Safe RL). indicates the
best performance among offline methods (offline RL and IL).2

Category Method
PointNav SocialNav

Test Zero-shot Test Zero-shot

SR↑ SPL↑ Cost↓ SR↑ SPL↑ Cost↓ SR↑ SNS↑ Cost↓ SR↑ SNS↑ Cost↓
RL PPO [Schulman et al. 2017] 0.66 0.64 0.51 0.49 0.45 0.78 0.34 0.64 0.66 0.24 0.57 0.51

Safe RL PPO-Lag [Ray et al. 2019] 0.60 0.58 0.41 0.60 0.57 0.53 0.17 0.51 0.33 0.08 0.47 0.50
PPO-ET [Sun et al. 2021] 0.57 0.53 0.47 0.53 0.49 0.65 0.05 0.52 0.26 0.02 0.50 0.62

Offline RL IQL [Kostrikov et al. 2021] 0.36 0.33 0.49 0.30 0.27 0.63 0.36 0.67 0.39 0.27 0.62 3.05
TD3+BC [Fujimoto and Gu 2021] 0.29 0.28 0.77 0.20 0.20 1.16 0.26 0.61 0.62 0.32 0.64 1.53

IL BC [Bain and Sammut 1995] 0.36 0.28 0.83 0.32 0.26 1.15 0.28 0.56 1.23 0.18 0.54 0.58
GAIL [Ho and Ermon 2016] 0.47 0.36 1.05 0.40 0.32 1.46 0.34 0.63 0.71 0.28 0.61 0.67

4 MetaUrban for AI-Driven Accessibility
In this section, we discuss how to design urban spaces to make them
more accessible to the varied nature of mobile machines with the
MetaUrban simulator. We outline 5 aspects that could potentially

1https://metadriverse.github.io/metaurban
2Results between Test and Zero-shot are not comparable, with the evaluations on
different datasets.

improve urban accessibility to better accommodate mobile machines
and, by extension, humans.
Simulating Diverse Accessibility Challenges. Urban spaces
present challenges like uneven terrain, curbs, and crowded side-
walks. MetaUrban can simulate these conditions to test how mobil-
ity systems and humans adapt to diverse accessibility challenges.
Doing so helps optimize urban layouts, ensuring that infrastructure
accommodates both AI-driven devices and individuals with mobility
impairments.
Modeling Infrastructure Accessibility. Accessibility infrastruc-
ture, such as ramps and tactile paving, is critical in cities. MetaUrban
can simulate environments with or without these features, helping
planners evaluate whether urban spaces meet accessibility standards
by evaluating whether mobility systems and humans could navigate
these spaces effectively.
Modeling Different Mobile Machines. Urban spaces must sup-
port a range of mobility machines, from electric wheelchairs to au-
tonomous delivery bots to robot dogs to humanoid robots. MetaUr-
ban provides various mobile machines and can simulate interactions
between them, ensuring that urban designs accommodate diverse
mobility solutions and improving navigation for everyone while
reducing congestion and conflict in shared spaces.
Modeling Social Interactions. Pedestrian behavior and interac-
tions in crowded urban spaces are often unpredictable. MetaUrban
provides diverse pedestrian models and vulnerable road users, sim-
ulating their behaviors and interactions with both each other and
mobility systems. By modeling these dynamics, MetaUrban enables
city planners to design urban spaces that facilitate smoother inter-
actions and accommodate the needs of different road users.
Improving Safety Protocols. Safety is a key concern in busy urban
environments. MetaUrban can simulate high-risk scenarios, such
as intersections or emergencies, to evaluate and improve the safety
protocols of mobility systems. This ensures urban spaces are safer
for vulnerable populations, such as individuals with disabilities,
during everyday use and critical situations.
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5 Conclusion
In this work, we presented MetaUrban, a highly adaptable and
scalable simulation platform designed to tackle the challenges of
AI-driven urban mobility and accessibility. By enabling the con-
struction of diverse, interactive urban environments, MetaUrban
provides a robust foundation for the development, testing, and eval-
uation of embodied AI systems in complex urban environments.
Our pilot study on point and social navigation tasks underscores
the platform’s potential to advance research in AI-driven urban
mobility.

Beyond mobility, MetaUrban offers a forward-looking framework
for addressing urban accessibility by simulating a wide range of
mobility systems, pedestrian interactions, and infrastructure chal-
lenges. As cities increasingly prioritize inclusivity, platforms like
MetaUrban will be instrumental in driving the design of AI-enabled,
accessible urban spaces that cater to the diverse needs of all resi-
dents, including able-bodied individuals, people with disabilities,
and robots.

6 Future Work
Future development of MetaUrban will focus on enhancing the plat-
form’s ability to simulate accessibility challenges, particularly for
mobility-impaired individuals. This will involve incorporating real-
world behavioral data and integrating user-driven requirements
to improve agent modeling. Additionally, we plan to incorporate
insights from urban planning and transportation modeling, enabling
MetaUrban to simulate diverse mobility scenarios and environmen-
tal conditions more accurately. By adopting an interdisciplinary
approach, including feedback from accessibility and urban design
experts, MetaUrban aims to better represent the complexities of
urban environments and offer more effective AI-driven solutions
for accessible cities.
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