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Abstract: 

This study advances the Signal-Vehicle Coupled Control (SVCC) model to optimize traffic 
signals at intersections for various transportation modes, including pedestrians, taking account of 
the needs of individuals with disabilities. Originally developed for Connected and Automated 
Vehicles (CAVs), the SVCC model was centered on optimizing signal timing and vehicle 
trajectories. However, most existing models overlook the safety and efficiency of non-vehicular 
road users, leading to increased delays and potential risks. The multimodal SVCC model 
incorporates active transportation and multimodal considerations, aiming to enhance both safety 
and efficiency for all users. By integrating pedestrians, including those with disabilities, into the 
optimization process, the multimodal SVCC outperforms traditional systems like actuated signal 
timing in reducing delays and conflicts. Additionally, it introduces adjustments to signal phase 
designs to ensure equitable access and safety at intersections. While the results demonstrate 
improvements in safety by reducing conflicts, further research is needed to explore infrastructure 
modifications that can minimize overall delays for all users. 

Introduction: 

New advancements enabled by the connected and automated vehicles (CAV) have attracted 
significant attention in the field of Intelligent Transportation Systems (ITS) (Guo et al., 2019; 
Shladover, 2018). Through their interaction with the surrounding environment, these vehicles 
provide abundant data that is offered along with their higher control flexibility, leading to a more 
enhanced urban traffic control (UTC). A key application of CAVs is the optimization of traffic 
flow at signalized intersections. This is made possible by technologies such as vehicle-to-vehicle 
(V2V), vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2X) communications, which 
significantly contribute to the intersection optimization process, leading to improved safety, 
mobility, and sustainability (Liang et al., 2018; Niroumand et al., 2020). 

Research has explored numerous approaches for optimizing CAV operations at signalized 
intersections. One such method, the multiscale Signal-Vehicle Coupled Control (SVCC), 
simultaneously optimizes vehicle trajectories and signal timings to improve intersection safety 
and efficiency.  For a comprehensive review of CAV applications in urban traffic signal planning 
and control, one can refer to Guo et al. (2019). Although studies on signal planning control and 
optimization in the CAV environment are abundant, they are primarily focused on vehicular 
traffic and neglect other road users and their safety considerations. To be implemented 
effectively in real-world scenarios, these models need to account for multimodal transportation, 
including pedestrians, cyclists, and especially elderly and disabled populations. 

Ensuring the safety and mobility of non-vehicular users, especially pedestrians with 
disabilities, is critical in creating inclusive, equitable, and efficient urban transportation systems. 
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Prioritizing only vehicular traffic can result in longer delays for pedestrians and cyclists, 
compromising their safety and discouraging active transportation modes. Moreover, individuals 
with disabilities face unique challenges at intersections, such as slower walking speeds, which 
necessitate additional time for safe crossing. 

To date, few studies have integrated non-vehicular road users into CAV intersection 
optimization. Niels et al. (2020) proposed incorporating demand-responsive (i.e., actuated) 
signals for pedestrians (Niels et al., 2020b) and bicyclists into a signal free intersection with 
CAVs, while later work integrated pedestrian signal timing into CAV trajectory optimization 
(Niels et al., 2024). Other studies explored automated pedestrian shuttles to address pedestrian 
mobility in CAV-dominated intersections (Jiang et al., 2024; Wu et al., 2022).  

This study aims to extend the SVCC model to accommodate a wider range of 
transportation modes, including pedestrians and cyclists, with particular attention to individuals 
with disabilities. By employing both model-based and learning-based approaches, we seek to 
optimize performance and safety for different road users, comparing the extended SVCC model 
against conventional signal timing systems. 

 
Methodology: 

The proposed multiscale SVCC  model, initially designed for scenarios involving only cars, 
aims to optimize both traffic signal timing and vehicle trajectories—considering speed, 
acceleration, and position—at the same time (Guo & Ban, 2023). This model tackles the 
challenge of managing traffic across different spatial and temporal scales in urban environments. 
For example, traffic signal control at intersections focuses on minimizing delays and maximizing 
throughput, while vehicle-level control prioritizes reducing fuel consumption and travel time. 
The SVCC model optimizes both levels of control simultaneously, balancing the objectives of 
each scale. The SVCC model has been applied to a single intersection, representative of one in 
Downtown Seattle, Washington (Figure 1). 

 
Figure 1. The Fairview Avenue and Denny Way intersection, Seattle, Washington (Guo & Ban, 

2023) 

Model-based approach: 
The model-based approach decomposes the signal control problem into two scales: a 

slower-scale optimization for traffic signal timing and a faster-scale optimization for vehicle 
trajectories. Using a Model Predictive Control (MPC) scheme, the model minimizes total 



intersection delay and vehicle fuel consumption by iteratively adjusting the system over a 
prediction horizon. The slower-scale problem is formulated as a mixed-integer nonlinear 
program (MINLP), focusing on optimizing signal phases and vehicle trajectories over larger time 
intervals. It considers constraints such as vehicle dynamics, car-following behavior, and signal 
phase regulations, generating optimized signal phase timings and trajectories for vehicles 
approaching the intersection. The faster-scale optimization, modeled as a nonlinear program 
(NLP), focuses on refining vehicle trajectories at shorter time intervals to reduce fuel 
consumption while maintaining consistency with the slower-scale signal control problem.  

The algorithm is implemented in Python and interfaces with the simulation software 
SUMO via the TraCI package. The steps of the model-based algorithm can be found in Figure 2. 
As can be seen, the model iteratively computes optimal signal phase timings and vehicle speed 
commands for the upcoming time step based on the results of the two optimization scales. For 
further details on the model formulation, refer to Guo & Ban (2023). The results from the model-
based approach ultimately provide optimized signal phase timings and vehicle speed commands 
for the following time steps. 



 
Figure 2. Model-base SVCC algorithm 

Learning-based approach: 
While the proposed MPC framework significantly improves the efficiency of the SVCC 

model, its scalability becomes a challenge as the system expands from a single intersection to a 
network of traffic signals, or when additional transportation modes are incorporated. As the 
problem grows in size and complexity, computational demands can substantially increase, 
leading to slower performance. To address this, we also explore various learning-based methods 
to reduce the computational burden of the optimization process. 

One learning-based model we explore here is the Imitation Learning (IL) approach. This 
method relies on "expert" data, which in our case, is generated from the model-based approach 
discussed earlier. The learning approach uses deep neural networks, specifically ResNet, to 
determine optimal signal timings based on traffic states (Figure 3). Each incoming lane at an 
intersection is discretized into cells, and vehicle data such as position, speed, and waiting time 
are aggregated into matrices, which serve as input to the network. The policy output generates 
signal timings for the next two time steps. Although the method simplifies vehicle control by 



decoupling signal control from vehicle trajectory prediction, it uses a rule-based algorithm for 
CAV movement, factoring in right of way, speed limits, and deceleration strategies. This 
approach balances computational efficiency and practicality by focusing on signal control while 
applying preset acceleration and deceleration rules for vehicles, ensuring safety and fuel 
efficiency in urban intersections. 

 

 
Figure 3. The ResNet based learning framework (Guo and Ban, 2023) 

This project aims to extend the current model-based and learning-based SVCC frameworks to 
accommodate multimodal transportation by integrating pedestrians, including those with 
disabilities, into the optimization model. The model-based approach was modified to ensure a 
balanced optimization of delays for both pedestrians and CAVs.  Key changes include a weighted 
sum of pedestrian and vehicle delays in the objective function, consistency between pedestrian 
phases and corresponding vehicle phases, and the introduction of a minimum pedestrian green 
time constraint. The pedestrian green time is calculated based on the following equation (FHWA, 
2021): 

𝐺! = 3.2 + 	
𝐿
𝑆!
+ 2.7 ∗

𝑁!
𝑊  

Where L is the length of the crossing, 𝑆! is the average pedestrian speed, 𝑁! is the number of 
pedestrians crossing at the corresponding phase, and 𝑊 is the width of the crossing.  

It is important to note that when disability considerations are included, the average pedestrian 
speed decreases from 3.5 ft/s to 2.5 ft/s, necessitating an extended green phase (FHWA, 2006). 
Additionally, the clearance time must be extended to account for the slower speed of disabled 
pedestrians. The results of applying these changes are presented in the next section. 
 
Results: 



The model-based and learning based approaches have already shown to significantly improve the 
vehicle performance at signalized intersection (Guo, 2022) (Figure 4 and Figure 5). The 
comparison metrics include: 

1. Average Fuel Consumption (mg/veh/m): This metric represents the total fuel 
consumption in milligrams by all vehicles approaching the intersection, divided by the 
number of vehicles and the average length of the incoming lanes (≈200m). 

2. Average Waiting Time (s/veh): The total time in which the approaching vehicles’ speed 
was below or equal 0.1 m/s divided by the number of vehicles. 

3. Average Time Loss (s/veh): The total time lost due to driving below the ideal speed 
summed over all the approaching vehicles divided by the number of vehicles. 

4. Average Queue Length (m): This metric indicates the average length of the queue from 
the intersection to the final vehicle in the line. 

 

 

 
Figure 4. Performance results of model-based SVCC (blue) compared with fixed-time (red) and 

actuated (black) scenarios (Guo, 2022) 

 
Figure 5. Performance results of Learning-based SVCC (green) model compared with model 

based (blue) and actuated signal timing (black) (Guo, 2022) 



For the multimodal SVCC, pedestrians with and without disability were integrated into the 
single-intersection optimization shown in Figure 1. The following additional metrics were used 
to evaluate performance for pedestrians: 

5. Average Pedestrian Time Loss (s/ped): The total time pedestrians spent walking or riding 
below their ideal speed, divided by their respective totals. 

6. Number of Conflicts between Pedestrians and CAVs: The number of instances where 
pedestrians and CAVs were within 2 meters of each other (e.g., due to insufficient 
clearance time for pedestrians). 

The results of the pedestrian integration into the model-based SVCC are presented in Tables 1-2 
and Figures 6-7. The model was tested across different pedestrian demand scenarios (Low, 
Medium, and High Demand) and levels of symmetry (Asymmetric and Symmetric pedestrian 
demand). Scenarios were also analyzed using various weighting factors for pedestrians and 
vehicles, allowing for flexibility in prioritizing different modes. The results indicate that the 
multimodal SVCC with pedestrians outperformed actuated signal control in nearly all tested 
scenarios. 
 

Table 1. Performance results for Symmetric Low, Medium and High pedestrian demand  

 
 

(50/50) % Decrease (70/30) % Decrease (30/70) % Decrease
Fuel Consumption 85.06 52.06 -38.80 52.74 -38.00 52.13 -38.71
Vehicle Waiting Time 19.37 10.1 -47.86 11.13 -42.54 11.03 -43.06
Vehicle Time Loss 32.9 21.93 -33.34 22.97 -30.18 22.77 -30.79
vehicle queue Length 15.25 9.83 -35.54 10.15 -33.44 9.45 -38.03
Pedestrian Time Loss 26.33 19.4 -26.32 20.61 -21.72 21 -20.24
Fuel Consumption 85.94 57.12 -33.54 58.06 -32.44 56.53 -34.22
Vehicle Waiting Time 21.31 16.98 -20.32 17.66 -17.13 16.65 -21.87
Vehicle Time Loss 34.9 30.58 -12.38 31.52 -9.68 30.08 -13.81
vehicle queue Length 16.87 12.49 -25.96 13.31 -21.10 12.28 -27.21
Pedestrian Time Loss 30.55 22.49 -26.38 26.7 -12.60 20.18 -33.94
Fuel Consumption 84.95 58.28 -31.39 58.65 -30.96 59.3 -30.19
Vehicle Waiting Time 19.88 18.3 -7.95 19.31 -2.87 20.85 4.88
Vehicle Time Loss 33.74 32.05 -5.01 33.45 -0.86 35.56 5.39
vehicle queue Length 15.25 13 -14.75 13.13 -13.90 14.39 -5.64
Pedestrian Time Loss 39.85 27.45 -31.12 32.51 -18.42 24.25 -39.15

Model-based SVCC (vehicle/ped weighting factor)
Symmetric pedestrian demand

High Ped 
Demand

Medium Ped 
Demand

Low Ped 
Demand

Metrics Actuated



Table 2.Performance results for Asymmetric Low, Medium and High pedestrian demand 

 
 
It is also evident from the results that as pedestrian demand increased, the multimodal SVCC 
model delivered greater benefits for pedestrian performance compared to the actuated signal 
scenario, though the benefits for vehicles decreased in higher pedestrian demand settings 
(Figures 6 and 7). 

 

  
Figure 6. Percentage of improvement of vehicle 

performance  
Figure 7. Percentage of improvement of pedestrian 

performance 

 
Lastly, Table 3 presents the results of incorporating pedestrians with disabilities into the 
multimodal SVCC. The model was tested with various disability rates (i.e., 30%, 50%, and 70% 
of pedestrians with disabilities) to assess how performance differs compared to scenarios where 
no pedestrians are disabled. As expected, since pedestrians with disabilities have lower crossing 
speeds, the overall performance of all road users was negatively impacted. 

0.5/0.5 % Decrease 0.7/0.3 % Decrease 0.3/0.7 % Decrease
Fuel Consumption 85.41 52.31 -38.75 52.61 -38.40 52.08 -39.024
Vehicle Waiting Time 20.43 9.62 -52.91 10.12 -50.47 10.13 -50.416
Vehicle Time Loss 33.98 21.6 -36.43 22.31 -34.34 21.86 -35.668
vehicle queue Length 15.88 9.57 -39.74 9.47 -40.37 9.22 -41.940
Pedestrian Time Loss 23 20.41 -11.26 17.22 -25.13 20.96 -8.870
Fuel Consumption 86.77 56.08 -35.37 55.97 -35.50 55.72 -35.784
Vehicle Waiting Time 22.27 14.79 -33.59 14.61 -34.40 14.64 -34.261
Vehicle Time Loss 36.09 28.36 -21.42 27.97 -22.50 28.4 -21.308
vehicle queue Length 17.75 11.88 -33.07 11.89 -33.01 11.64 -34.423
Pedestrian Time Loss 31.88 24.4 -23.46 25.41 -20.29 21.71 -31.901
Fuel Consumption 85.39 57.21 -33.00 56.94 -33.32 59.46 -30.367
Vehicle Waiting Time 20.62 17.03 -17.41 16.45 -20.22 19.76 -4.171
Vehicle Time Loss 34.8 32.19 -7.50 30.33 -12.84 34.32 -1.379
vehicle queue Length 15.8 12.1 -23.42 12.96 -17.97 13.91 -11.962
Pedestrian Time Loss 39.68 26.07 -34.30 32.63 -17.77 25.21 -36.467

Model-based SVCC (vehicle/ped weighting factor)
Asymmetric pedestrian

High Ped 
Demand

Medium Ped 
Demand

Low Ped 
Demand

Metrics Actuated
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Table 3. Comparison of results for pedestrians with disabilities 

 
 
Additionally, as the disability rate increases, the overall performance degrades for both cars and 
pedestrians. The average pedestrian delay rises, and the number of conflicts between vehicles 
and pedestrians also increases. This is because pedestrians with disabilities require more green 
time and clearance time to safely cross the intersection. These findings highlight the need for 
infrastructure adjustments—specifically, modifying signal green time, as well as yellow and all-
red phases, to account for disability considerations. After applying these adjustments, the results 
are as follows: 
 
Table 4. Results after signal phase adjustment to accommodate pedestrian green phase for 
pedestrians with disabilities 

 
The results in Table 4 indicate that adjusting traffic signals to accommodate the lower speeds of 
pedestrians with disabilities can effectively reduce the number of conflicts between pedestrians 
and CAVs, while mobility and sustainability goals are slightly impacted negatively. Further 
investigation is needed to identify necessary changes in infrastructure that can enhance other 
performance outcomes as well. 

Conclusion: 
This study demonstrates the effectiveness of extending the Signal-Vehicle Coupled Control 

(SVCC) model to accommodate pedestrians, including those with disabilities, into the 
optimization process. The integration of multimodal considerations, such as extended green and 
clearance times for disabled pedestrians can improve safety and accessibility at signalized 
intersections. While the model shows enhanced performance in reducing delays and conflicts for 
pedestrians compared to traditional signal control methods, further infrastructure adjustments 
may be necessary to fully optimize traffic flow for users with disabilities.  
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