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ABSTRACT1
Researchers have long explored the relationship between pedestrian safety and the built environ-2
ment using traditional statistical tools. However, past studies often rely on limited data sources and3
fail to capture the full range of built environment features. This study integrates computer vision,4
using Mask2Former with the Mapillary Vistas dataset for semantic segmentation, to analyze how5
the built environment, sociodemographic factors, and travel behavior influence pedestrian crashes.6
We leverage a dataset from the Greater Orlando area (2012-2021) and combine these computer7
vision-derived features with other data in hurdle regression models, accounting for excess zeros8
and overdispersion in crash data. The results show significant associations, including a lower like-9
lihood of crashes in areas with higher sidewalk-to-street ratios and greener environments captured10
by the green view index. The analysis also indicates that census tracts with a higher proportion of11
disabled residents have fewer pedestrian crashes, while commercial land use consistently correlates12
with increased crash risk. Population density and vehicle miles traveled show positive associations13
with crashes, likely due to exposure in dense or high-traffic areas. This study demonstrates the14
value of integrating computer vision with traditional pedestrian safety research to provide a more15
detailed assessment of sprawled urban contexts.16

17
Keywords: Pedestrian safety, computer vision, Mask2Former, Mapillary Vistas, sociodemograph-18
ics, urban planning.19
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1. INTRODUCTION1
Pedestrian crashes, defined as incidents where at least one pedestrian was involved (4), continue to2
be a major safety concern in the United States. Despite initiatives like Vision Zero and Complete3
Streets, crashes and fatalities in Southern states, particularly Florida, remain high. Cities like4
Orlando have adopted these programs, but factors such as car-dependent urban design, light trucks,5
higher speed limits, and nighttime activity continue to contribute to high fatality rates (1, 6, 12, 22).6
Florida consistently ranks among the highest for pedestrian crashes and fatalities, particularly in7
metro areas like Orlando, Tampa, and Miami (5, 20).8

Traditional studies examining the relationship between sociodemographic factors and the9
built environment (11, 16, 21, 24) often miss critical infrastructure details, such as crosswalks,10
curb cuts, and greenery. While urban areas may have access to such data, sprawled regions face11
limitations. Recent advances in computer vision offer more granular analysis of how the built12
environment impacts safety.13

This study uses computer vision to generate variables for non-linear regression analysis,14
aiming to better understand how sociodemographic and built environment factors influence pedes-15
trian crashes. By integrating computer vision with traditional data, we assess crashes in sprawling16
areas like Orlando. Using Mask2Former and the Mapillary Vistas dataset, this research seeks to17
address the question: How can computer vision-derived variables improve our understanding of18
pedestrian crashes and how can these insights guide targeted interventions to enhance safety for19
vulnerable populations in sprawled urban contexts?20

2. LITERATURE REVIEW21
The integration of computer vision techniques in transportation research, such as semantic seg-22
mentation, has allowed for per-pixel analysis of images using fully convolutional networks (15).23
Transportation research has been using these models alongside Google Satellite and Street View24
(GSV) imagery to analyze built environment factors like crosswalks and pedestrian infrastructure25
(14), neighborhood change (18), poverty (9), and urban green space exposure (8).26

Computer vision models have long been used to analyze car infrastructure, but their ap-27
plication to pedestrian infrastructure is a more recent development gaining traction. As the field28
advances, pedestrian analysis is becoming increasingly effective. For example, Li and Rodriguez29
(13) incorporated the GSV and computer vision generated dataset to a change-on-change regres-30
sion model that evaluates the impact of station area crosswalk visibility enhancement on station-31
level ridership change between 2010 and 2018. Hu et al. (7) used street view images (SVIs) to32
capture pedestrian exposure, showing that higher exposure leads to more frequent crashes but re-33
duces injury severity, supporting the "safety in numbers" effect. Given the effectiveness of using34
GSV for street level pedestrian safety audit (17), and the potential of employing computer vi-35
sion models to automate the process at a significantly larger spatial and temporal scale, this study36
demonstrates the potential of combining both approaches.37

3. DATA38
We examine pedestrian fatality trends in the Greater Orlando Area using data from multiple pub-39
lic sources spanning 2012-2021. Our primary datasets include the American Community Survey40
(ACS) for sociodemographic variables at the census tract level, Florida Department of Transporta-41
tion (FDOT) data for pedestrian crashes, panoramic images from Google Street View, and land use42
classifications from the Florida Department of Environmental Protection.43
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3.1. Sociodemographics1
Sociodemographic variables were retrieved through the Census API and included data at the census2
tract level for population characteristics such as age distribution, disability status, racial composi-3
tion, educational attainment, and travel behavior.4

3.2. Crashes5
Pedestrian crash data was collected via the FDOT API and included crash locations and severity6
ratings across the Greater Orlando Area. Crashes were classified using FDOT’s injury severity7
ratings, with levels 1-4 aggregated for analysis, and level 5, indicating fatalities, excluded. The8
primary outcome was whether a crash occurred, regardless of severity level.9

3.3. Computer Vision10
Detailed features of the built environment were captured using Google Street View imagery. Nearly11
24,000 panoramic images were randomly sampled across the study area using the Google Street12
View API. Each panoramic image was split into four angles (front, back, left, right) using a cube13
map format to reduce distortion and better focus on relevant surroundings, as illustrated in Figures14
2, 3, and 4.15

The built environment features extracted from the images included crosswalks, sidewalks,16
bike lanes, vegetation, and curb cuts. Mask2Former, a segmentation model from Meta (3), was17
applied to the images using the Mapillary Vistas dataset (19) to detect these features, which are18
often absent from traditional datasets.19

3.4. Land Use20
Land use classifications were obtained from the Florida Department of Environmental Protection,21
which categorized areas into residential, commercial, and industrial zones.22

3.5. Exposure23
Exposure measures were also considered in the analysis, including variables such as vehicle miles24
traveled (VMT), population density, and employment centers. These metrics are meant to account25
for areas that may represent more pedestrian activity.26
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FIGURE 1: Pedestrian crashes in the Greater Orlando Study Area (2012-2021).

FIGURE 2: Panoramic Street View Image.



Lester, Liang, Ha, Li, and Wang 4

FIGURE 3: Converted Street View Image into Cube Map Format.

FIGURE 4: Mask2Former and Mapillary Vistas Results.
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TABLE 1: Variable Definitions for the Model

Variable Description
Sidewalk to Street Ratio Ratio of sidewalk pixels to the total street-related pixels (road, curb,

parking). (10)
Green View Index Proportion of green pixels to the total pixels in the image. (2)
Crosswalk (Dummy) Binary variable indicating the presence (1) or absence (0) of a plain

crosswalk in the image.
Curb Cut (Dummy) Binary variable indicating the presence (1) or absence (0) of a curb cut

in the image.
Bike Lane (Dummy) Binary variable indicating the presence (1) or absence (0) of a bike lane

in the image.
Pedestrian Area (Dummy) Binary variable indicating the presence (1) or absence (0) of a pedestrian

area in the image.
Traffic Light Number of traffic lights in the image.
Black Residents (%) Proportion of Black or African American residents in the population.
Hispanic Residents (%) Proportion of Hispanic or Latino residents in the population.
Asian Residents (%) Proportion of Asian residents in the population.
Alaska Native Residents (%) Proportion of Alaska Native or other Indigenous residents in the popu-

lation.
Unemployed (%) Proportion of unemployed residents in the population.
College Educated (%) Proportion of residents with a college education (bachelor’s degree or

higher).
Older Adults (65+) (%) Proportion of residents aged 65 and older in the census tract.
Disabled Residents (%) Proportion of residents with a disability in the census tract.
Commercial Land Use Binary variable indicating if the photo location is within a commercial

land use area.
Residential Land Use Binary variable indicating if the photo location is within a residential

land use area.
Vehicle Miles Traveled (VMT) Total vehicle miles traveled in the census tract.
Population Density Number of persons per square mile in the census tract.
Employment Center Binary variable indicating if the location is within a major employment

center.



Lester, Liang, Ha, Li, and Wang 6

TABLE 2: Summary Statistics

Statistic N Mean St. Dev. Min Max
Computer Vision
Sidewalk to Street Ratio 239,246 0.0598 0.0638 0.0000 1.0000
Green Vegetation Index 239,246 0.2144 0.1375 0.0000 0.8929
Crosswalk Plain (Dummy) 239,246 0.0409 0.1980 0.0000 1.0000
Curb Cut (Dummy) 239,246 0.5682 0.4953 0.0000 1.0000
Bike Lane (Dummy) 239,246 0.0183 0.1341 0.0000 1.0000
Pedestrian Area (Dummy) 239,246 0.1286 0.3348 0.0000 1.0000
Traffic Light 239,246 0.0149 0.0849 0.0000 1.6000
Sociodemographics
Black Residents (%) 239,246 17.28 20.41 0.00 99.57
Hispanic Residents (%) 239,246 25.74 16.33 0.00 86.58
Asian Residents (%) 239,246 3.97 3.42 0.00 25.58
Alaska Native Residents (%) 239,246 0.24 0.60 0.00 11.40
Unemployed Residents (%) 239,246 4.23 2.51 0.11 24.11
College Educated Residents (%) 239,246 20.76 10.39 2.05 55.43
Older Adults (65+) (%) 239,246 324.36 184.15 4.00 1259.00
Disabled Residents (%) 239,246 5507.14 2313.33 626.00 16994.00
Land Use
Commercial Land Use 239,246 0.1178 0.3223 0.0000 1.0000
Residential Land Use 239,246 0.4888 0.4999 0.0000 1.0000
Exposure
VMT 239,246 514,505,000 462,705,400 934,290 2,097,029,000
Population Density 239,246 0.0011 0.0007 0.0000 0.0070
Employment Center 239,246 0.0238 0.1524 0.0000 1.0000

1

4. METHODOLOGY2
We use a hurdle regression model to account for the large number of zeros in the pedestrian crash3
data. This model combines logistic regression to handle the zero counts and negative binomial4
regression for the positive counts.5

For the logistic regression, the dependent variable represents the probability (Pi) of a crash6
occurrence, where the outcome is coded as 1 if there is at least one crash and 0 otherwise. The7
logistic regression equation transforms these probabilities using the logit function, as defined in8
(23):9

logit(Pi) = ln
(

Pi

1−Pi

)
= β0 +β1X1,i +β2X2,i + . . .+βKXK,i (1)10

Here, β0 is the model constant, and β1, . . . ,βK are the coefficients corresponding to the explanatory11
variables X1,i, . . . ,XK,i, which include socio-demographic factors and built environment character-12
istics. To stabilize the logistic regression and manage multicollinearity, we applied L1 regulariza-13
tion (Lasso), which shrinks the coefficients of less important variables toward zero.14
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In the second stage of the hurdle model, to address the issue of overdispersion (i.e., the1
variance being larger than the mean) in the count data, we used an L1-regularized negative binomial2
regression model. L1 regularization again helped stabilize the parameter estimation, reduce model3
complexity, and assist in model convergence. The negative binomial model is specified as:4

λi = exp(βXi + εi) (2)5
6

where λi represents the expected number of pedestrian crashes for census tract i, β represents the7
coefficients, Xi includes the explanatory variables, and εi is a gamma-distributed error term with8
mean 1 and variance α . The probability distribution function for the negative binomial model is:9

P(yi) =
Γ
( 1

α
+ yi

)
Γ
( 1

α

)
yi!

(
1
α

1
α
+λi

) 1
α
(

λi
1
α
+λi

)yi

(3)10

In this equation, Γ is the gamma function, yi is the observed count of pedestrian crashes, and α is11
the overdispersion parameter that allows the variance to differ from the mean.12
To further stabilize the estimation of parameters and address multicollinearity, L1 regularization is13
applied to the negative binomial model as well. The log-likelihood function for the L1-regularized14
negative binomial model is:15

L (λi) = ∏
i

Γ
( 1

α
+ yi

)
Γ
( 1

α

)
yi!

(
1
α

1
α
+λi

) 1
α
(

λi
1
α
+λi

)yi
−λ

K

∑
j=1

|β j| (4)16

Here, λ is the regularization parameter that controls the strength of the L1 penalty, and ∑
K
j=1 |β j| is17

the L1 norm of the coefficients. The regularization term reduces the magnitude of the coefficients,18
helping to prevent overfitting and improve model generalization.19

5. RESULTS20
5.1. Sociodemographic Factors and Pedestrian Crashes21
The hurdle regression analysis in Table 3 shows several associations between sociodemographic22
factors and pedestrian crashes. The proportion of residents with disabilities stands out as one of23
the most significant variables, consistently showing that census tracts with higher proportions of24
disabled residents experience fewer crashes. This finding persisted even after accounting for other25
sociodemographic and built environment characteristics.26

The percentage of college-educated residents was also negatively associated with crashes,27
showing fewer incidents in areas with higher educational attainment. Race variables showed mixed28
results. The proportion of Black and Hispanic residents in census tracts displayed positive asso-29
ciations with crashes in certain models, although these relationships were not consistent when30
controlling for other factors. The percentage of older adults was marginally significant in some31
models, showing a negative association with crashes.32

5.2. Land Use and Exposure33
Commercial land use was consistently associated with higher crash frequencies, which is expected,34
considering that commercial areas have higher traffic and pedestrian activity.35

Exposure-related variables such as vehicle miles traveled (VMT) and population density36
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TABLE 3: Hurdle Regression Results

Pedestrian Crashes

Variable Model 1 (Logit) Model 1 (NB) Model 2 (Logit) Model 2 (NB) Model 3 (Logit) Model 3 (NB)

Sociodemographics
Black Residents (%) 0.1734*** 0.1971*** 0.3031** 0.0297

(0.031) (0.033) (0.100) (0.032)
Hispanic Residents (%) 0.1206*** 0.1191*** -0.0271 -0.0897**

(0.032) (0.034) (0.036) (0.034)
Asian Residents (%) -0.0090 -0.0186 0.0673* 0.0049

(0.026) (0.027) (0.031) (0.026)
Alaska Native Residents (%) -0.0119 -0.0122 -0.0291 -0.0423+

(0.020) (0.021) (0.021) (0.023)
Unemployed Residents (%) -0.0424+ -0.0583* 0.0411 0.0339

(0.026) (0.027) (0.025) (0.026)
College Educated Residents (%) -0.1558*** -0.1374** -0.2555*** -0.2581***

(0.039) (0.040) (0.041) (0.042)
Older Adults (65+) (%) -0.0771+ -0.0645 -0.0743+ -0.0858*

(0.039) (0.041) (0.041) (0.042)
Disabled Residents (%) -0.2690*** -0.3004*** -0.2414*** -0.2789***

(0.039) (0.042) (0.041) (0.043)
Land Use
Commercial Land Use 0.1103*** 0.1364*** 0.1374*** 0.1339***

(0.022) (0.023) (0.020) (0.021)
Residential Land Use 0.0048 0.0156 -0.0309 -0.0039

(0.027) (0.028) (0.028) (0.029)
Exposure
VMT 0.1734*** 0.2115*** 0.1868*** 0.2130***

(0.025) (0.026) (0.026) (0.026)
Population Density 0.3013*** 0.3438*** 0.4001*** 0.4217***

(0.024) (0.027) (0.025) (0.026)
Employment Center 0.0430* 0.0347 0.0772*** 0.0887***

(0.022) (0.023) (0.020) (0.020)
Computer Vision
Sidewalk to Street Ratio -0.0391 -0.0527+ -0.3509*** -0.3339***

(0.026) (0.027) (0.036) (0.036)
Green View Index -0.1048*** -0.1193*** -1.0437*** -1.0767***

(0.025) (0.026) (0.046) (0.047)
Crosswalk (Dummy) -0.0043 -0.0039 0.0978*** 0.0918***

(0.022) (0.023) (0.014) (0.015)
Curb Cut (Dummy) 0.0621* 0.0636* 0.4187*** 0.3929***

(0.025) (0.026) (0.031) (0.031)
Bike Lane (Dummy) 0.0240 0.0128 0.0613*** 0.0606***

(0.020) (0.022) (0.013) (0.015)
Pedestrian Area (Dummy) -0.0002 -0.0019 -0.1200** -0.1026**

(0.024) (0.025) (0.036) (0.036)
Traffic Light 0.0673*** 0.0782*** 0.2509*** 0.2985***

(0.017) (0.019) (0.008) (0.011)

Log Likelihood -10907.00 -11672.00 -11224.00 -11991.00 -9203.00 -9921.60
R-squared / Pseudo R-squared 0.03049 0.02902 0.00234 0.00252 0.18260 0.17520
Observations 238802 238802 238802 238802 238802 238802
Standard errors in parentheses
Note: + p<0.1 * p<0.05 ** p<0.01 *** p<0.001

showed positive associations with pedestrian crashes. Again, these results were expected as the1
increase in exposure will likely see more pedestrian activity.2

5.3. Built Environment Characteristics3
Several built environment features measured through computer vision found significant associa-4
tions. Some were expected such as the sidewalk-to-street ratio being negatively associated with5
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crashes in the negative binomial models, showing areas with more sidewalks saw fewer incidents.1
The green view index, capturing vegetation presence, was another significant factor with negative2
associations across multiple models.3

Infrastructure such as crosswalks, curb cuts, and bike lanes had mixed results. Crosswalks4
showed a positive association in some models, while curb cuts were linked to higher crash fre-5
quencies in the logit models but did not reach significance in the negative binomial models. Traffic6
lights were consistently associated with higher crash frequencies across the models.7

6. CONCLUSION AND DISCUSSION8
This study offers a framework for assessing pedestrian crashes in Greater Orlando by integrating9
Mask2Former for computer vision with traditional statistical data. The segmentation results cap-10
ture detailed built environment features like sidewalks, crosswalks, and curb cuts more efficiently11
than manual methods.12

These findings give way to several areas for further research. The negative association13
between disability prevalence and pedestrian crashes warrants closer examination to understand the14
reasoning behind this relationship. Future research could discuss whether specific interventions in15
sprawled areas with higher disabled populations contribute to reduced crash risk or if other factors16
are influencing this association, such as vehicle reliance.17

The consistently positive association of commercial land use with pedestrian crashes has18
been studied extensively, although future work should explore variations within sprawled com-19
mercial areas, such as parking minimums, street design, or availability and quality of pedestrian20
infrastructure.21

Green view index results suggest a possible link between the presence of greenery and22
safety, potentially related to calming traffic or enhancing visibility. Future work should explore23
whether adding greenery has safety benefits or if these associations reflect other neighborhood24
characteristics not captured.25

Lastly, future research should address the downsides of using current Google Street View26
imagery, which may not account for changes over time in the built environment, potentially affect-27
ing the accuracy of pedestrian safety assessments.28

Overall, this study provides an initial step towards understanding the unique factors asso-29
ciated with pedestrian crashes in the Greater Orlando Area, especially within the context of urban30
sprawl. While the findings found certain associations, they also point to the need for more re-31
search into how built environment characteristics, land use, and sociodemographic factors interact32
to influence crash risk.33
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