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Abstract

People who are blind perceive the world differently than those who are sighted,
which can result in distinct motion characteristics. For instance, when crossing at
an intersection, blind individuals may have different patterns of movement, such as
veering more from a straight path or using touch-based exploration around curbs
and obstacles. These behaviors may appear less predictable to motion models
embedded in autonomous vehicles. Yet, the ability of 3D motion models to capture
such behavior has not been previously studied, as existing datasets for 3D human
motion currently lack diversity and are biased toward people who are sighted. In
this work, we introduce BlindWays, the first multimodal motion benchmark for
pedestrians who are blind. We collect 3D motion data using wearable sensors
with 11 blind participants navigating eight different routes in a real-world urban
setting. Additionally, we provide rich textual descriptions that capture the dis-
tinctive movement characteristics of blind pedestrians and their interactions with
both the navigation aid (e.g., a white cane or a guide dog) and the environment.
We benchmark state-of-the-art 3D human prediction models, finding poor perfor-
mance with off-the-shelf and pre-training-based methods for our novel task. To
contribute toward safer and more reliable autonomous systems that reason over
diverse human movements in their environments, we will publicly release our novel
text-and-motion benchmark.

1 Introduction

A blind pedestrian may not look forward to signal intent to cross before stepping into the road, and
may take longer to explore tactile cues when crossing in various intersections [2, 1, 5, 6, 4]. Blind
pedestrians may also significantly veer in open spaces, and unexpectedly step into the road due to
a truck parked in obstructed intersections with damaged or ambiguous curbs. In such scenarios,
reasoning over subtle 3D behaviors, e.g., hand-aid coordination gestures, could improve future
prediction in autonomous vehicles and avoid potential safety-critical outcomes. Yet, as far as we
are aware, no prior work has investigated predicting pedestrian motion in such edge cases and their
inherently distinct, subtle, and uncertain nature. This is a critical issue in autonomous driving and
urban accessibility which we hope to discuss in UrbanAccess24, which includes in its scope AI-based
mobility tools and techniques for autonomous vehicles, as well as “examine the emerging role of AI
in the design of equitable and accessible cities.” In this work, we are interested in understanding the
capabilities of state-of-the-art 3D motion models for modeling and predicting future blind motion
– ultimately, to ensure that autonomous systems and vehicles in urban environments operate safely
around disabled pedestrians. Our overarching goal is to enable more robust, accurate, and needs-aware

1Software for Motion Capture: Xsens MVN Animate
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A blind woman with a cane is carefully approaching a crosswalk.
She uses her cane to probe the path in front of her and stops when
she feels the curb and tactile paving.

A blind woman with a cane is carefully walking towards an
intersection. She takes six small steps before stopping right
before the street at the edge of the curb. The cane is in her right
hand, and she uses a combination of sweeping and tapping to
probe the path in front of her. She recognizes the end of the
sidewalk when he feels the curb and yellow tactile paving.

Figure 1: Data Collection with Wearable IMU-based Sensors. Depicting a frame from the study
with diverse route stimuli, intersections, a motion capture, and a wide-angle egocentric camera view.

pedestrian behavior prediction models that effectively account for disability-related scenarios and
behaviors.

2 The BlindWays Dataset

2.1 Overview

We collect BlindWays, a comprehensive blind motion dataset comprising 1,046 clips and 0.6 million
frames, along with 2,092 detailed and paired high- and low-level text descriptions. We capture natural
motion data from 11 blind and low-vision individuals navigating dynamic, previously unseen outdoor
environments along carefully engineered paths exhibiting various challenges. Notably, this is the first
work to propose blind motion data enriched with text descriptions, an exceptionally challenging and
labor-intensive process. BlindWays’s text descriptions are informed by third-person and egocentric
videos, each totaling 0.3 million frames. Specifically, captured contextual videos play a critical
role in the annotation process by providing an overall scene of blind motion, allowing annotators
to sufficiently leverage scene and video context to accurately, precisely, and expressively describe
the motion. To synchronize between motion data and videos, we asked participants to clap at the
beginning of each route. To ensure high quality, the MoCap system is calibrated in each route, and
text descriptions are annotated in-house by human annotators, including motion experts, and carefully
checked. We employ a wearable system based on Inertial Measurement Units (IMUs) and filter noisy
sequences to maintain accuracy and reliability.

2.2 Data Collection Procedure

We conducted a user study involving 11 participants, consisting of three women and eight men,
all of whom are either blind (N=10) or have low vision (N=1). Each participant utilizes their own
mobility aid, which includes either a cane or a guide dog, to record natural behavior. Our participants
represent a diverse range of ages, levels of visual impairment, and mobility aids, ensuring a rich
data collection of navigation behaviors. Participants are equipped with bone conduction headsets
to receive real-time auditory instructions from Google Maps. Our data collection was approved by
our Institutional Review Board (IRB#6052E). Each participant provided informed consent before
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participating in the study and was compensated $50/hour for up to three hours including travel time;
data collection sessions typically lasted two hours or less. We note that two researchers always
followed the participants during dataset collection to ensure their safety.

Scenarios: In collaboration with local blind advisors and sighted certified orientation and mobility
instructors, we engineered eight distinct routes to encompass a variety of real-world scenarios that
blind people commonly encounter. These scenarios include walking on the curb, crossing streets,
navigating open spaces, and ascending and descending staircases. For example, while crossing
streets, participants faced a challenge when encountering a subway track midway, requiring them
to stop, reassess, and then continue, which enabled us to capture their behavior while handling
sudden stops and changes in terrain. Navigating open spaces presented another challenge due to
the lack of obstacles providing environmental cues, forcing participants to rely heavily on auditory
instructions. Walking on curbs involved dealing with intermittent obstacles like parked bicycles,
trash cans, and overhanging branches. Ascending and descending staircases further added to the
complexity, requiring careful coordination and heightened awareness of their immediate environment.
Diverse and realistic scenarios enable BlindWays to capture rich and nuanced motion data, reflecting
daily real-world challenges and strategies of blind individuals. Each route is carefully mapped and
pre-tested to ensure both feasibility and participant safety. At the start of each route, we provided
high-level instructions, including specific objectives and expected challenges. For example, we
guided participants by informing them of their current location (e.g., surrounding street names) and
the direction they were heading to help them better contextualize the audio navigation aid, which
usually guides pedestrians by providing street names and directions. We also briefly explained
potential obstacles they might encounter, such as a train/tram track in the middle of the route or stairs,
to prepare them for critical challenges ahead.

Recording: We employ the Xsens motion capture system, consisting of 18 IMU sensors for body
joints and a mobility aid, enabling realistic motion capture in various settings. To comprehensively
capture the navigation process, we record third-person video of blind pedestrians and egocentric
views, as well as motion data. For egocentric views, participants wear a GoPro HERO10 Black
on their chest using a comfortable strap, allowing for hands-free and immersive (GoPro Max Lens
Mod) recording. The camera is set to face around the participant’s feet to meticulously capture
cane movements. For third-person views, the accompanying researchers wear a Samsung Galaxy
smartphone around the chest and follow the participants without interrupting their natural movements.
All data are synchronized, allowing for an in-depth analysis and annotations of navigation strategies
and challenges.

To gain further insights into participants’ navigation experiences, upon completion of each route,
participants are asked to rate their confidence on a scale of 1-7 in (i) their ability to navigate the route
and (ii) the guidance that they received from the Google Maps app.

2.3 Data Annotation Pipeline

To achieve a nuanced understanding of the navigation behaviors of blind individuals, we employ
a meticulous annotation pipeline build in-house that leverages the synchronized third-person view
RGB videos along the motion data. To ensure privacy, we mosaic the faces of all people appearing
in the videos, both the blind participants and passersby. The annotation process involves 15 human
annotators, comprising three motion experts (human biomechanics, sensorimotor, and mobility
researchers) and 12 novices, who are provided with detailed instructions, exemplars, and feedback.

High-Level Descriptions: For high-level annotations, annotators are requested to focus on describing
the overall action of the motion, the purpose behind it, and how the participants were holding their
mobility aids (e.g., a cane and a guide dog). Annotators are instructed to provide clear and concise
descriptions that convey the intent and broader context of the actions. For example, a high-level
description might be: “A blind man with a cane in his right-hand searches for a street post to press
the button. He then orients himself in the direction he wants to cross the street.”

Low-Level Descriptions: Low-level annotations require more detailed descriptions of the motion
behavior, such as the number of steps taken and the precise use of mobility aids. For instance, a
low-level description might be: “A blind man with a cane searches and locates a street post. He
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Table 1: Embedding-Based Evaluation Metrics. We show embedding-based metrics (based on
Jiang et al. [7]). For the Diversity metrics, closer to results with Real data (first line) is better. Each
experiment is repeated 20 times and a statistical interval with 95% confidence is reported.

Method Training Set R Top1 ↑ FID ↓ Diversity → MModality ↑
Real - 0.106±.0.008 0.257±.0.018 6.232±.0.258 -

HumanML3D [3] Motion-X [9] 0.041±.0.007 11.203±.0.109 5.113±.0.258 3.680±.0.026

MotionGPT [7] Motion-X [9] 0.046±.0.006 15.002±.0.504 5.871±.0.234 4.646±.0.171

HumanML3D [3] BlindWays 0.060±.0.012 3.340±.0.257 5.861±.0.266 1.896±.0.037

MotionGPT [7] BlindWays 0.054±.0.008 5.101±.0.116 5.098±.0.148 3.993±.0.134

HumanML3D [3] Motion-X [9] + BlindWays 0.054±.0.009 8.612±.0.480 6.260±.0.301 4.921±.0.051

MotionGPT [7] Motion-X [9] + BlindWays 0.036±.0.003 10.313±.0.183 3.874±.0.164 2.759±.0.100

moves forward three steps to orient himself in the direction he wants to cross the street, using his cane
in his right hand and positioned in front of him.” The detailed information helps in capturing exact
motion dynamics and interactions between the participant and the surrounding dynamic environment.
Use of subjective adjectives (e.g., confidently, hesitantly, or meticulously) is encouraged to capture
observed behaviors in a more expressive way.

3 Experiments

Text-to-Motion: We provide a comprehensive comparison of text-to-motion baselines using
embedding-based analysis [7]. Table 1 includes R Top1, FID, Diversity, and Multi-Modality metrics.
R Top1 measures retrieval accuracy, FID assesses the realism of generated motions, Diversity
evaluates the variance of generated motions, and Multi-Modality examines how generated motions
vary within each text description. For evaluation, we train a feature embedding model proposed by
HumanML3D [3]. Notably, we observe high FID when baselines are trained only with Motion-X.
Due to the lack of blind motion in Motion-X, models trained solely on Motion-X tend to generate
diverse but unrealistic blind motions, subsequently increasing the distance between the feature space
of generated motions and real blind motions. We demonstrate training on BlindWays improves
model performance here as well; for instance, models trained on BlindWays achieve an FID of 3.340,
significantly closer to the real data’s FID of 0.257, indicating higher realism.

Table 2: Evaluating Motion Prediction on BlindWays.
Given text description and a motion history window as in-
puts, we predict future 9.5-second 3D poses and compute
diversity (APD, higher is better) and accuracy (ADE and
FDE, lower is better) pose metrics.

Method APD ↑ ADE ↓ FDE ↓
MotionGPT [7] - 3.40 3.44
CVAE [8] 7.68 0.47 0.56
DLow [10] 11.65 0.46 0.59
DLow+ [10] 15.14 0.45 0.56

Motion Prediction: Finally, we measure
the capabilities of motion-conditioned
models, where both past motion and
text context are provided as input to the
model. Unlike text-driven motion gener-
ation, this approach focuses on predict-
ing diverse and plausible future motions
given a history of motion. The models
are trained to predict the next 9.5 sec-
onds of future motion given 0.5 seconds
of past motion. We further incorporate
text embeddings into the stochastic mod-
eling approaches, including CVAE [8]
and DLow [10], allowing the model to
be conditioned on text for controllable
motion generation. We further ablate DLow leveraging a transformer module, referred to as DLow+.
This ablation significantly increases sample diversity, without hindering accuracy. We evaluate Mo-
tionGPT [7] on motion-to-motion for a fair comparison. Table 2 shows CVAE-based models predict
diverse future motion without compromising on realism. While CVAE achieves an APD of 7.68,
DLow and its variant successfully enhance sample diversity by 52% and 97%, respectively. These
results demonstrate the effectiveness of incorporating text embeddings through a late fusion technique
in improving the diversity and accuracy of motion-driven motion generation models. CVAE-based
methods show better accuracy compared to MotionGPT due to their focus on capturing fine-grained
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motion details through conditional variational approaches, whereas MotionGPT prioritizes averaged
motion patterns.

4 Conclusion

In this study, we introduce BlindWays, a novel benchmark focusing on the unique motion behaviors
of blind and low-vision pedestrians navigating dynamic outdoor urban environments. Our dataset
includes 3D motion data enriched with high- and low-level text descriptions informed by correspond-
ing third-person and ego-centric RGB videos that meticulously capture the actions, purposes, and
environmental contexts of blind motion, particularly how they utilize canes to interact with their
surroundings. Our experiments demonstrate that existing state-of-the-art motion-language models
struggle to generalize to blind motion despite their advancements, highlighting the unique challenges
posed by this domain. This underscores the necessity of a blind motion benchmark to ensure safe and
effective urban planning, such as autonomous driving. Furthermore, we emphasize the significant la-
bor and time, an effort that took more than 2 years, required to capture and annotate a comprehensive,
high-quality dataset. The BlindWays provides a rich, contextually detailed resource enabling models
to accurately and diversely model blind motion, advancing the field of motion-language modeling
and enhancing the safety and reliability of autonomous systems.

5 Limitations

Our work addresses a prevalent bias in motion modeling datasets, specifically the focus on sighted
and simplified pedestrian motion. Our study underscores the complexity of diverse motion modeling,
particularly in cases where pre-training may be non-beneficial or even detrimental to model predic-
tions, such as with blind motion. To tackle this bias, we collected realistically complex data within
an important but under-discussed use case. However, our study has several limitations. The sample
size of 11 participants, providing a dataset of 1,005 motion samples after filtering pose tracking
failure cases, is representative of in-situ accessibility studies. Nonetheless, additional real-world
data from a more diverse participant pool could help identify further biases and model issues (e.g.,
various physical characteristics such as different heights and backgrounds). Another limitation is
the expensive ($6,500) motion-capture suit, which may hinder larger-scale studies. While we chose
higher-cost, higher-quality tracking technology, lower-cost solutions (e.g., inertial, vision-based) are
continuously being developed and can facilitate easier and more scalable capture, leading to more
robust and practical motion models across many underrepresented use cases in current human motion
benchmarks.
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